首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   33篇
  国内免费   1篇
化学   318篇
晶体学   1篇
力学   4篇
数学   49篇
物理学   66篇
  2024年   1篇
  2023年   4篇
  2022年   1篇
  2021年   11篇
  2020年   7篇
  2019年   15篇
  2018年   13篇
  2017年   7篇
  2016年   23篇
  2015年   17篇
  2014年   12篇
  2013年   25篇
  2012年   22篇
  2011年   38篇
  2010年   16篇
  2009年   12篇
  2008年   28篇
  2007年   27篇
  2006年   23篇
  2005年   31篇
  2004年   22篇
  2003年   23篇
  2002年   13篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1966年   1篇
排序方式: 共有438条查询结果,搜索用时 187 毫秒
41.
Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.  相似文献   
42.
The nature of intramolecular charge transfer (CT) of N,N-diaryl dihydrophenazine photocatalysts (PCs) in different solvents is explored in context of their performance in organocatalyzed atom transfer radical polymerization (O-ATRP). PCs having a computationally predicted lowest energy excited state exhibiting CT character can operate a highly controlled O-ATRP in a wide range of solvent polarities, from non-polar hexanes to highly polar N,N-dimethylacetamide. For PCs having a computationally predicted lowest energy excited state not possessing CT character, their ability to operate a controlled O-ATRP is decreased. This study confirms the importance of CT character in the excited state for N,N-diaryl dihydrophenazine PCs, and a deeper understanding of the activity of CT PCs has enabled the synthesis of polymers of low dispersity (<1.10) in a controlled fashion. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3017–3027  相似文献   
43.
Direct current electrokinetic systems generally require Faradaic reactions to occur at a pair of electrodes to maintain an electric field in an electrolyte connecting them. The vast majority of such systems, e.g. electrophoretic separations (capillary electrophoresis) or electroosmotic pumps (EOPs), employ electrolysis of the solvent in these reactions. In many cases, the electrolytic products, such as H+ and OH? in the case of water, can negatively influence the chemical or biological species being transported or separated, and gaseous products such as O? and H? can break the electrochemical circuit in microfluidic devices. This article presents an EOP that employs the oxidation/reduction of the conjugated polymer poly(3,4-ethylenedioxythiophene), rather than electrolysis of a solvent, to drive flow in a capillary. Devices made with poly(3,4-ethylenedioxythiophene) electrodes are compared with devices made with Pt electrodes in terms of flow and local pH change at the electrodes. Furthermore, we demonstrate that flow is driven for applied potentials under 2?V, and the electrodes are stable for potentials of at least 100?V. Electrochemically active electrodes like those presented here minimize the disadvantage of integrated EOP in, e.g. lab-on-a-chip applications, and may open new possibilities, especially for battery-powered disposable point-of-care devices.  相似文献   
44.
Fabry disease patients show a deficiency in the activity of the lysosomal enzyme α-galactosidase (α-GAL or α-Gal A). One proposed treatment for Fabry disease is pharmacological chaperone therapy, where a small molecule stabilizes the α-GAL protein, leading to increased enzymatic activity. Using enzyme kinetics, tryptophan fluorescence, circular dichroism, and proteolysis assays, we show that the pharmacological chaperones 1-deoxygalactonojirimycin (DGJ) and galactose stabilize the human α-GAL glycoprotein. Crystal structures of complexes of α-GAL and chaperones explain the molecular basis for the higher potency of DGJ over galactose. Using site-directed mutagenesis, we show the higher potency of DGJ results from an ionic interaction with D170. We propose that protonation of D170 in acidic conditions leads to weaker binding of DGJ. The results establish a biochemical basis for pharmacological chaperone therapy applicable to other protein misfolding diseases.  相似文献   
45.
Luminescent metal-organic frameworks (MOFs), Ln(3+)@bio-MOF-1, were synthesized via postsynthetic cation exchange of bio-MOF-1 with Tb(3+), Sm(3+), Eu(3+), or Yb(3+), and their photophysical properties were studied. We demonstrate that bio-MOF-1 encapsulates and sensitizes visible and near-infrared emitting lanthanide cations in aqueous solution.  相似文献   
46.
The nature of water's interaction with biomolecules such as proteins has been difficult to examine in detail at atomic resolution. Solution NMR spectroscopy is potentially a powerful method for characterizing both the structural and temporal aspects of protein hydration but has been plagued by artifacts. Encapsulation of the protein of interest within the aqueous core of a reverse micelle particle results in a general slowing of water dynamics, significant reduction in hydrogen exchange chemistry and elimination of contributions from bulk water thereby enabling the use of nuclear Overhauser effects to quantify interactions between the protein surface and hydration water. Here we extend this approach to allow use of dipolar interactions between hydration water and hydrogens bonded to protein carbon atoms. By manipulating the molecular reorientation time of the reverse micelle particle through use of low viscosity liquid propane, the T(1ρ) relaxation time constants of (1)H bonded to (13)C were sufficiently lengthened to allow high quality rotating frame nuclear Overhauser effects to be obtained. These data supplement previous results obtained from dipolar interactions between the protein and hydrogens bonded to nitrogen and in aggregate cover the majority of the molecular surface of the protein. A wide range of hydration dynamics is observed. Clustering of hydration dynamics on the molecular surface is also seen. Regions of long-lived hydration water correspond with regions of the protein that participate in molecular recognition of binding partners suggesting that the contribution of the solvent entropy to the entropy of binding has been maximized through evolution.  相似文献   
47.
We report detailed studies on the characterization of an intramolecular NH-F hydrogen bond formed within a fluorinated "proton sponge" derivative. An ammonium ion, generated from 8-fluoro-N,N-dimethylnaphthalen-1-amine, serves as a charged hydrogen bond donor to a covalently bound fluorine appropriately positioned on the naphthalene skeleton. Potentiometric titrations of various N,N-dimethylnaphthalen-1-amines demonstrate a significant increase in basicity when hydrogen bonding is possible. X-ray crystallography reveals that NH-F hydrogen bonding in protonated 8-fluoro-N,N-dimethylnaphthalen-1-amine is heavily influenced by ion pairing in the solid state; bifurcated and trifurcated hydrogen bonds are formed depending on the counterion utilized. Compelling evidence of hydrogen bonding in the 8-fluoro-N,N-dimethylnaphthyl-1-ammonium cation is provided by gas-phase cryogenic vibrational photodissociation spectroscopy. Solution-phase infrared spectroscopy provides complementary results, and the frequencies of the N-H stretching mode in both phases are in excellent agreement with the computed vibrational spectra. NMR analysis of protonated 8-fluoro-N,N-dimethylnaphthalen-1-amine demonstrates significant H-F coupling between the N-H hydrogen and fluorine that cannot be attributed to long-range, through-bond interactions; the couplings correlate favorably with calculated values. The results obtained from these experiments are congruent with the formation of an NH-F hydrogen bond upon protonation of 8-fluoro-N,N-dimethylnaphthalen-1-amine.  相似文献   
48.
Benzene, a recognized hematotoxicant and carcinogen, can damage the human immune system. We studied the association between single nucleotide polymorphisms (SNPs) in genes involved in innate immunity and benzene hematotoxicity in a cross-sectional study of workers exposed to benzene (250 workers and 140 controls). A total of 1,236 tag SNPs in 149 gene regions of six pathways were included in the analysis. Six gene regions were significant for their association with white blood cell (WBC) counts (MBP, VCAM1, ALOX5, MPO, RAC2, and CRP) based on gene-region (P<0.05) and SNP analyses (FDR<0.05). VCAM1 rs3176867, ALOX5 rs7099684, and MPO rs2071409 were the three most significant SNPs. They showed similar effects on WBC subtypes, especially granulocytes, lymphocytes, and monocytes. A 3-SNP block in ALOXE3 (rs7215658, rs9892383, and rs3027208) showed a global association (omnibus P = 0.0008) with WBCs even though the three SNPs were not significant individually. Our study suggests that polymorphisms in innate immunity genes may play a role in benzene-induced hematotoxicity; however, independent replication is necessary.  相似文献   
49.
The stability of copper-seamed C-alkylpyrogallol[4]arene hexamers with varying chain lengths in solution has been studied using small-angle neutron scattering (SANS). The progression in diameter of spherical capsules with increasing alkyl chain lengths of copper-seamed hexamers in solution suggests both robustness as well as a close correlation between the solid phase and solution phase structures.  相似文献   
50.
Biomolecules are the building blocks of life. Nature has evolved countless biomolecules that show promise for bridging metal ions. These molecules have emerged as an excellent source of biocompatible building blocks that can be used to design Metal-Biomolecule Frameworks (MBioFs). This feature article highlights the advances in the synthesis of this class of MOFs. Special emphasis is provided on the crystal structures of these materials, their miniaturization to the submicron length scale, and their new potential storage, catalytic, and biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号